Example \(\vec{f},\vec{g} \colon [0,1]^2 \to \R^3\)
\[\vec{f}(u,v) = \matrix{\sin u \\ \cos u \\ v} \]
\[\vec{g}(u,v) = \matrix{\sin u \\ \cos u \\ v^2} \]
First Fundamental Form
Example \(\vec{f},\vec{g} \colon [0,1]^2 \to \R^3\)
\[\vec{f}(u,v) = \matrix{\sin u \\ \cos u \\ v} \]
\[\vec{f}_{,u} = \matrix{\cos u \\ -\sin u \\ 0} \quad \vec{f}_{,v} = \matrix{0 \\ 0 \\ 1}\]
\[\vec{g}(u,v) = \matrix{\sin u \\ \cos u \\ v^2} \]
\[\vec{g}_{,u} = \matrix{\cos u \\ -\sin u \\ 0} \quad \vec{g}_{,v} = \matrix{0 \\ 0 \\ 2v}\]
First Fundamental Form
Example \(\vec{f},\vec{g} \colon [0,1]^2 \to \R^3\)
\[\vec{f}(u,v) = \matrix{\sin u \\ \cos u \\ v} \]
\[\vec{I_f}(u,v) = \matrix{1 & 0 \\ 0 & 1 } \]
\[\vec{g}(u,v) = \matrix{\sin u \\ \cos u \\ v^2} \]
\[\vec{I_g}(u,v) = \matrix{1 & 0 \\ 0 & 4v^2 }\]
same shape - but different metric!
First Fundamental Form
Example \(\vec{f},\vec{g} \colon [0,1]^2 \to \R^3\)
\[\vec{f}(u,v) = \matrix{\sin u \\ \cos u \\ v} \]
\[\vec{g}(u,v) = \matrix{\sin u \\ \cos u \\ v^2} \]
Definitions
A regular parameterization \(\vec{x} \colon \Omega \to \set{S}\) is
conformal (angle preserving), if the angle of every pair of intersecting curves on \(\set{S}\) is the same as that of the corresponding pre-images in \(\Omega\).
equiareal (area preserving) if every part of \(\Omega\) is mapped onto a part of \(\set{S}\) with the same area
isometric (length preserving), if the length of any arc on \(\set{S}\) is the same as that of its pre-image in \(\Omega\).
A regular parameterization \(\vec{x}(u,v)\) is isometric, iff its first fundamental form is the identity: \[\mat{I}\of{u,v} \;=\; \matrix{ 1 & 0 \\ 0 & 1 }\]
A surface can have an isometric parameterization, iff it has zero Gaussian curvature.
Which surfaces with zero Gaussian curvature do you know?
Conformal Maps
A regular parameterization \(\vec{x}(u,v)\) is conformal, iff its first fundamental form is a scalar multiple of the identity:
A function \(\vec{f} \colon \set{S} \to \R^n\) on a surface \(\set{S}\) is harmonic if it satisfies (for each coordinate) \[\laplace_{\set{S}} \vec{f} \;=\; 0\]
A harmonic function minimizes the Dirichlet energy given suitable boundary conditions \[E_D(\vec{f}) = \int_{\set{S}} \norm{ \grad_{\set{S}} \vec{f} }^2 \func{d}A\]
Isometric maps are conformal, conformal maps are harmonic:
isometric ⇒ conformal ⇒ harmonic
Harmonic maps are easier to compute than conformal maps
Harmonic maps are not conformal in general, i.e. do not necessarily preserve angles
Harmonic Maps
Theorem [Rado-Kneser-Choquet]
If \(\vec{f} \colon \set{S} \to \R^2\) is harmonic and maps the boundary \(\partial \set{S}\) of \(\set{S}\) homeomorphically onto the boundary \(\partial \Omega\) of some convex region \(\Omega \subset \R^2\), then \(\vec{f}\) is bijective.
Piecewise linear map of a discrete 3D triangle mesh onto a planar 2D polygon
Given a mesh \(\set{S}\) compute the mapping \(\vec{u} \colon \set{S} \to \Omega \subset \R^2\), i.e., for each vertex \(v_i\) find parameter values \(\vec{u}_i \in \R^2\).
Discrete Harmonic Maps
Map the boundary \(\partial \set{S}\) homeomorphically to some (convex) polygon \(\partial \Omega\) in the parameter plane
Solve \(\laplace_{\set{S}} \vec{u} = 0\) through a linear system
Theorem [Tutte]:
If \(\vec{u} \colon \set{S} \to \Omega\) is a convex combination map that maps the boundary \(\partial \set{S}\) homeomorphically to the boundary \(\partial \Omega\) of a convex region \(\Omega \subset \R^2\), then \(\vec{u}\) is one-to-one.