\[InCircle(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) \Leftrightarrow -\det \left[ \begin{array}{cccc} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{array} \right] < 0 \]
\[InCircle(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) \Leftrightarrow - \det \left[ \begin{array}{cccc} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{array} \right] < 0 \]
Images from J. Shewchuck
Images from J. Shewchuck
Images from J. Shewchuck
de Berg et al., Computational Geometry: Algorithms and Applications, Springer Verlag, 2008.
O’Rourke, Computational Geometry in C, Cambridge University Press, 1998.